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Abstract
In this paper, by means of the Lax representations, we demonstrate the existence
of infinitely many conservation laws for the general Toda-type lattice equation,
the relativistic Volterra lattice equation, the Suris lattice equation and some
other lattice equations. The conserved density and the associated flux are given
formulaically. We also give an integrable discretization for a lattice equation
with n dependent coefficients.

PACS numbers: 20.30.lk, 05.45.Yv, 05.50.+q

1. Introduction

The study of the lattice soliton equations has received considerable attention in recent years. A
lattice soliton equation possesses rich mathematical structure and a lot of integrable properties,
such as the Lax representation, the Hamiltonian structure, soliton solution, infinitely many
conservation laws, and so on. The existence of infinitely many conservation laws is an
important indicator of integrability of the system. From a physical viewpoint, it is also very
interesting to know whether there exist conservation laws for a lattice system. For a lattice
equation

F(u̇n, ün, . . . , un−1, un, un+1, . . .) = 0 (1.1)

where u̇n = ∂un
∂t
, ün = ∂2un

∂t2
, if there exist functions ρn and Jn, such that

ρ̇n|F=0 = Jn − Jn+1 (1.2)

then equation (1.2) is called the conservation law of equation (1.1), where ρn is the conserved
density and Jn is the associated flux. Suppose equation (1.1) has conservation law (1.2) and
Jn is bounded for all n and vanishes at the boundaries, then

∑
n ρn = c is an integral of motion

of lattice equation (1.1). How to obtain conservation laws for a lattice system? Hereman and
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Göktas proposed a computational method for scaling invariant systems [1, 2]. By means of
this method, conserved densities for many nonlinear lattice systems, such as the Toda lattice,
the Volterra lattice, the Suris lattices et al, are derived. In [3], using the method, several
conservation laws for the Belov–Chaltikian lattice [4] and the Blaszak–Marciniak three-field
lattice [5] are given. However, the computational method has a shortcoming. On the one
hand, if we want to obtain more higher order conservation laws, the calculation is very tedious
and complex. On the other hand, the method cannot provide the justification of whether there
exist infinitely many conservation laws for the discrete system. In [6, 7], by means of the
linear scattering equation, infinitely many conservation laws for the semi-discrete matrix NLS
equation are derived. In this paper, we focus on the following lattice equations:

• The general Toda-type lattice soliton equation [8],

ṗn = −µpn
(
qn+1(βpn − δ)

qn
− qn(βpn−1 − δ)

qn−1

)
(1.3)

q̇n = qn(µpn + b)− βµqn+1pn

which includes many well-known lattice equations, such as the modified Toda lattice, the
relativistic Toda lattice and the Suris lattices discussed in [9–15]:

q̈n = q̇n(e
qn+1−qn − eqn−qn−1)

q̈n = q̇n+1q̇n
g2 eqn+1−qn

1 + g2 eqn+1−qn − q̇nq̇n−1
g2 eqn−qn−1

1 + g2 eqn−qn−1

q̈n = q̇nq̇n+1
g2 eqn+1−qn

1 + g2 eqn+1−qn − q̇n−1q̇n
g2 eqn−qn−1

1 + g2 eqn−qn−1
+ δg2q̇n(eqn+1−qn − eqn−qn−1)

q̈n = (1 + εq̇n)(eqn+1−qn − eqn−qn−1) (1.4)

q̈n = (1 + εq̇n)(1 + εq̇n+1)
eqn+1−qn

1 + ε2 eqn+1−qn − (1 + εq̇n−1)(1 + εq̇n)
eqn−qn−1

1 + ε2 eqn−qn−1

q̈n = (1 + εq̇n)

(
q̇n+1 − eqn+1−qn

1 + ε eqn+1−qn eqn+1−qn − q̇n−1 − eqn−qn−1

1 + ε eqn−qn−1
eqn−qn−1

)
.

• The relativistic Volterra lattice equation,

ṗn = pn(qn − qn−1 + h(pnqn − pn−1qn−1))
(1.5)

q̇n = qn(pn+1 − pn + h(pn+1qn+1 − pnqn))

which was proposed by Suris and Ragnisco in [14]. Its bilinear structure and determinant
solution was obtained [16].

• Lattice equation with n dependent coefficients,

ṗn = pn

(
1 + pn+1

1 + pn+1 + θ(n)qn+1/(qn
√
pn)

− 1 + pn
1 + pn + θ(n− 1)qn/(qn−1

√
pn−1)

)

q̇n = qn

(
1 + θ(n− 1)qn/(2qn−1

√
pn−1)

1 + pn + θ(n− 1)qn/(qn−1
√
pn−1)

)
(1.6)

which comes from the following lattice equation discussed in [17]:

ṗn = pn

(
1 + pn+1

1 + pn+1 + qn+1sn/qn
− 1 + pn

1 + pn + qnsn−1/qn−1

)

q̇n = qn

(
1 + qnsn−1/(2qn−1)

1 + pn + qnsn−1/qn−1

)
(1.7)

ṡn = sn

2

(
qn+1sn/qn

1 + pn+1 + qn+1sn/qn
− qnsn−1/qn−1

1 + pn + qnsn−1/qn−1

)
.
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For equation (1.7), we have a strong constraint
(
pns

2
n

)
t
= 0, which meanspns2

n is a function of
only n. Set pns2

n = θ2(n), with θ(n) being an arbitrary function of n, equation (1.6) is given.
Integrable properties of lattice equations (1.3)–(1.6), such as the Lax representations and
the Hamiltonian structures, have been obtained. The purpose of this paper is to demonstrate
the existence of infinitely many conservation laws for lattice equations (1.3)–(1.6) and to
give the corresponding conserved density and the associated flux formulaically by means
of their Lax pairs and the method proposed in [6, 7]. Another interesting topic in discrete
soliton theory is integrable discretization. For a continuous soliton equation which admits
continuous Lax pairs, its spatial discrete version (differential-difference equation or lattice
equation) admits semi-discrete Lax pairs

ψn+1 = Unψn ψn,t = Nnψn (1.8)

and its spatial and temporal discrete version (difference-difference equation or partial
difference equation) admits discrete Lax pairs

ψn+1 = Unψn ψ̃n = Vnψn (1.9)

where ψ̃n = ψn(t + h) with h being discrete-time stepsize. Nonlinear partial difference
equations have been obtained which have as limiting forms the nonlinear Schrödinger,
KdV and mKdV equations [18–20]. These partial difference equations have a number of
special properties [21] and are constructed by the method of inverse scattering transform.
Computations showed that these partial difference equations provide excellent numerical
schemes [22–24]. Integrable discretizations for lattice equations, such as the Toda, the
Volterra, the relativistic Toda, the Bogoyavlensky and the relativistic Volterra lattices, have
been obtained [25–29]. Here, the phrase ‘integrable discretization’ for a lattice equation
means the obtained partial difference equation to admit discrete Lax pairs (1.9) and it is a
discrete-time approximation to the original lattice equation. In [17], we obtained integrable
discretization of the general Toda-type equation (1.3). As an application, the Lagrangian and
Newtonian forms of integrable discretizations of the special Toda-type lattice equation (1.4)
are given uniformly. What is the integrable discretization of lattice equation (1.6)? This
question was discussed in [17]. However, we failed to find a proper form. Another aim of the
present paper is to give an answer to the integrable discretization of lattice equation (1.6).

The paper is organized as follows. In section 2 we give the Lax pairs for lattices (1.3)–(1.6)
which come from a proper discrete linear scattering problem. In section 3, it is shown that the
lattice derived from the discrete linear scattering problem has infinitely many conservation laws
and the corresponding conserved density and the associated flux are given formulaically. Then
we obtain the corresponding results for lattice equations (1.3)–(1.6). So, their integrability is
further confirmed. In the concluding section we deal with integrable discretization of lattice
equation (1.6).

2. Lax pairs for lattice equations (1.3), (1.5) and (1.6)

In order to derive infinitely many conservation laws for lattice equations (1.3)–(1.6), we give
their Lax pairs in this section. Considering the discrete linear scattering problem

ψn+1 =
(
λpn − λ−1 qn

rn λsn

)
ψn (2.1)

∂ψn

∂t
= Nnψn Nn =

(
An Bn

Cn Dn

)
(2.2)
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we have the following results:

• The general Toda-type lattice equation (1.3) admits the Lax pairs (2.1) and (2.2), where

sn = δ rn = βpn − δ

qn
(2.3)

and

Nn =
(−µqn(βpn−1−δ)

qn−1
+ b + d + µλ−2 −λ−1µqn

−λ−1µ(βpn−1−δ)
qn−1

d

)
(2.4)

with β , µ, δ, b and d being arbitrary constants.
• The relativistic Volterra lattice equation (1.5) has the Lax pairs (2.1) and (2.2) with (2.3)

and (2.4), where

pn → pn

µ
qn → eD

−1ln qn
µδ rn →

(
β

µ
pn − δ

)
e−D−1ln qn

µδ h = −β
µδ

(2.5)

and D−1 is the inverse operator of difference operator D defined by D−1fn =
1
2

(∑
j�n−1 −∑

j�n
)
fj .

• Lattice equation (1.6) admits the Lax pairs (2.1) and (2.2), where

rn = −θ(n)(pn + 1)

qn
√
pn

(2.6)

Nn = 1

(1 + λ2)
(

1 + pn + θ(n−1)qn
qn−1

√
pn−1

)
(
λ2(pn + 1) λqn

− λθ(n−1)(pn+1)
qn−1

√
pn−1

(λ2−1)θ(n−1)qn
2qn−1

√
pn−1

)
. (2.7)

3. Infinitely many conservation laws of the general Toda-type lattice equation (1.3), the
relativistic Volterra lattice equation (1.5) and lattice equation (1.6)

In this section, we first show that the lattice equation derived from discrete linear scattering
problem (2.1)–(2.2) has infinitely many conservation laws and the corresponding conserved
density and the associated flux are given formulaically. Then we give the corresponding
results for lattice equations (1.3)–(1.6). For discrete isospectral problem (2.1)–(2.2), a direct
calculation leads to

ψ1n+1

ψ1n
= λpn − λ−1 + qn

ψ2n

ψ1n
(3.1)

and (
ψ1n+1ψ

−1
1n

)
t

ψ1n+1ψ
−1
1n

= An+1 + Bn+1	n+1 − An − Bn	n (3.2)

where 	n = ψ2n

ψ1n
, and

	n+1 = (rn + λsn	n)
(
λpn − λ−1 + qn	n

)−1
.

It follows that

	n = λ2pn−1	n + λqn−1	n−1	n − λ2sn−1	n−1 − λrn−1. (3.3)
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Suppose the eigenfunctions ψ1(n, t, λ) and ψ2(n, t, λ) are two analytical functions of the
arguments and expand 	n with respect to λ by the Laurent series

	n =
∞∑
j=0

λjw(j)n (3.4)

and substitute equation (3.4) into equation (3.3), we have

w(1)n = −rn−1 w(3)n = pn−1w
(1)
n + qn−1w

(1)
n−1w

(1)
n − sn−1w

(1)
n−1

w(5)n = pn−1w
(3)
n + qn−1

(
w
(3)
n−1w

(1)
n +w(1)n−1w

(3)
n

)
− sn−1w

(3)
n−1

(3.5)
w(2j−1)
n = pn−1w

(2j−3)
n + qn−1

(
w
(2j−3)
n−1 w(1)n + w(2j−5)

n−1 w(3)n + · · · + w(1)n−1w
(2j−3)
n

)
− sn−1w

(2j−3)
n−1 j = 2, 3, 4, . . .

w(2j)n = 0 j = 0, 1, 2, . . . .

It follows from equation (3.2) that

∂

∂t

∞∑
k=1


k
n

k
= Hn −Hn+1 (3.6)

where


n = λ2pn + λqn	n Hn = An + Bn	n. (3.7)

Note that


n = λ2
∞∑
k=0

λ2kv2k (3.8)

with

v0 = pn − qnrn−1 v2k = qnw
(2k+1)
n (3.9)

we have

∂

∂t

∞∑
k=0

λ2kρ(2k)n = λ−2(Hn −Hn+1) (3.10)

where

ρ(2k)n = v2k +
1

2

∑
l1+l2=2k−2

vl1vl2 +
1

3

∑
l1+l2+l3=2k−4

vl1vl2vl3 + · · ·

+
1

k − 1

∑
l1+l2+···+lk−1=4

vl1vl2 · · · vlk−1 + vk−1
0 v2 +

vk+1
0

k + 1
. (3.11)

Make a comparison of the powers of λ on both sides of equation (3.10), infinitely many
conservation laws of the lattice equation derived from scattering problem (2.1)–(2.2) are
obtained,

ρ
(2k)
n,t = J (2k)n − J

(2k)
n+1 k = 0, 1, 2, . . . . (3.12)

On the other hand, from linear scattering problem (2.1)–(2.2), we have

ψ2n+1

ψ2n
= λsn + rn	n (3.13)
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and (
ψ2n+1ψ

−1
2n

)
t

ψ2n+1ψ
−1
2n

= Dn+1 + Cn+1	n+1 −Dn − Cn	n (3.14)

where 	n = ψ1n

ψ2n
, and

	n+1 =
(
λpn − λ−1

)
	n + qn

rn	n + λsn
.

It follows that

	n = λ2pn	n + λqn − λrn	n	n+1 − λ2sn	n+1. (3.15)

Set

	n =
∞∑
j=0

λjf (j)n (3.16)

and substitute equation (3.16) into equation (3.15), we obtain that

f (1)n = qn

f (3)n = pnf
(1)
n − snf

(1)
n+1 − rnf

(1)
n f

(1)
n+1

f (5)n = pnf
(3)
n − snf

(3)
n+1 − rn

(
f (1)n f

(3)
n+1 + f (3)n f

(1)
n+1

)
(3.17)

f (2j−1)
n = pnf

(2j−3)
n − snf

(2j−3)
n+1 − rn

(
f (1)n f

(2j−3)
n+1 + f (3)n f

(2j−5)
n+1 + · · · + f (2j−3)

n f
(1)
n+1

)
j = 2, 3, 4, . . .

f (2j)n = 0, j = 0, 1, 2, . . . .

It follows from equation (3.14) that

∂

∂t

[
ln(sn + rnqn) +

∞∑
k=1

(−1)k−1�k
n

k

]
= Gn+1 −Gn (3.18)

where

�n = rn(	n − λqn)

λ(sn + rnqn)
Gn = Cn	n +Dn. (3.19)

Note that

�n = λ2
∞∑
k=0

λ2kg2k (3.20)

with

g2k = rnf
(2k+3)
n

sn + rnqn
(3.21)

we have

∂

∂t

[
ln(sn + rnqn) + λ2

∞∑
k=0

λ2kγ (2k)n

]
= Gn+1 −Gn (3.22)

where

γ (2k)n = g2k − 1

2

∑
l1+l2=2k−2

gl1gl2 +
1

3

∑
l1+l2+l3=2k−4

gl1gl2gl3 + · · ·

+
(−1)k−2

k − 1

∑
l1+l2+···+lk−1=4

gl1gl2 . . . .glk−1 + (−1)k−1gk−1
0 g2 +

(−1)kgk+1
0

k + 1
. (3.23)
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Make a comparison of the powers of λ on both sides of equation (3.22), we propose another
infinitely many conservation laws of the lattice equation derived from linear scattering problem
(2.1)–(2.2),

γ
(2k)
n,t = z

(2k)
n+1 − z(2k)n k = −1, 0, 1, 2, . . . . (3.24)

Example 1. For the general Toda-type equation (1.3), we have

w(1)n = δ − βpn−1

qn−1
w(3)n = pn−1(δ − βpn−1)

qn−1
− βpn−1(δ − βpn−2)

qn−2

w(5)n =
(
pn−1 +

qn−1(δ − βpn−2)

qn−2

)[
pn−1(δ − βpn−1)

qn−1
− βpn−1(δ − βpn−2)

qn−2

]
(3.25)

− βpn−1

[
pn−2(δ − βpn−2)

qn−2
− βpn−2(δ − βpn−3)

qn−3

]
. . .

Hn = an + λ−1bn	n = −µqn
+∞∑
j=1

λ2jw(2j+1)
n (3.26)

f (1)n = qn f (3)n = pn(qn − βqn+1)
(3.27)

f (5)n = βpnpn+1(βqn+2 − qn+1) + (qn − βqn+1)

[
p2
n +

pnqn+1(δ − βpn)

qn

]
. . .

Gn = d +
µ(δ − βpn−1)

qn−1

+∞∑
j=1

λ2j f (2j+1)
n . (3.28)

So infinitely many conservation laws (3.12) and (3.24) of the general Toda-type lattice equation
(1.3) are given, where the corresponding conserved densities ρ(2k)n , γ (2k)n (k = 0, 1, 2, 3, . . .)
and the associated flux J (2k)n , z(2k)n (k = 0, 1, 2, 3, . . .) are presented in the following equations:

ρ(0)n = v0 = pn +
(δ − βpn−1)qn

qn−1
J (0)n = −µqnw(3)n

ρ(2)n =
(
ρ(0)n

)2

2
+ qnw(3)n J (2)n = −µqnw(5)n

ρ(4)n =
(
ρ(0)n

)3

3
+ qnw

(3)
n ρ

(0)
n + qnw

(5)
n J (4)n = −µqnw(7)n

. . . (3.29)

ρ2k
n = v2k +

1

2

∑
l1+l2=2k−2

vl1vl2 +
1

3

∑
l1+l2+l3=2k−4

vl1vl2vl3 + · · ·

+
1

k − 1

∑
l1+l2+···+lk−1=4

vl1vl2 · · · vlk−1 + vk−1
0 v2 +

vk+1
0

k + 1

J (2k)n = −µqnw(2k+3)
n

. . .
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and

γ (−2)
n = lnpn z(−2)

n = µ(δ − βpn−1)qn/qn−1

γ (0)n = (βpn − δ)(qn − βqn+1)/βqn z(0)n = µpn(δ − βpn−1)(qn − βqn+1)/qn−1

γ (2)n = (βpn − δ)
(
f (5)n − f (3)n

/
2
)/
qn z(2)n = µ(δ − βpn−1)f

(5)
n /qn−1

. . .

γ (2k)n = g2k − 1

2

∑
l1+l2=2k−2

gl1gl2 +
1

3

∑
l1+l2+l3=2k−4

gl1gl2gl3 + · · · (3.30)

+
(−1)k−2

k − 1

∑
l1+l2+···+lk−1=4

gl1gl2 . . . glk−1 + (−1)k−1gk−1
0 g2 +

(−1)kgk+1
0

k + 1

z(2k)n = µ(δ − βpn−1)f
(2k+3)
n

/
qn−1.

. . .

It is interesting that infinitely many conservation laws for the special Toda-type lattice equation
(1.4) can be given uniformly by equations (3.29) and (3.30) with the proper choice of
parameters.

Example 2. The relativistic Volterra lattice (1.5) possesses infinitely many conservation laws
(3.12) and (3.24), where the first and the second conserved densities and associated flux are
written in the form,

ρ(0)n = pn + qn−1 + hpn−1qn−1

ρ(2)n = 1
2 (pn + qn−1 + hpn−1qn−1)

2 + (1 + hpn−1)pn−1qn−1 + h(1 + hpn−2)pn−1qn−1qn−2

J (0)n = −(1 + hpn−1 + hqn−2 + h2pn−2qn−2)pn−1qn−1 (3.31)

J (2)n = −(1 + h(pn−1 + qn−2 + hpn−2qn−2))
(
p2
n−1qn−1 + (1 + hpn−2)pn−1qn−1qn−2

)
− hpn−1pn−2qn−1qn−2(1 + h(pn−2 + qn−3 + hpn−3qn−3))

. . .

γ (−2)
n = lnpn z(−2)

n = (1 + hpn−1)qn−1
(3.32)

γ (0)n = pn + qn + hpnqn z(0)n = pnqn−1(1 + hpn−1)(1 + hqn).

. . .

The infinitely many conservation laws of the Volterra lattice equation can be derived from the
above equations as h → 0.

Example 3. For lattice equation (1.6), we have

w(1)n = θ(n− 1)(1 + pn−1)

qn−1
√
pn−1

Hn = an + λ−1bn	n (3.33)

where

an = pn + 1

n

bn = qn

n

n = 1 + pn +
θ(n− 1)qn
qn−1

√
pn−1

(3.34)

and

(1 + λ2)
∂

∂t

∞∑
k=1


k
n

k
= Hn −Hn+1 (3.35)
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where


n =
∞∑
k=0

λ2kv2k. (3.36)

We also have

f (1)n = qn Gn = λcn	n + 1
2

(
dn + λ2en

)
(3.37)

where

cn = −θ(n− 1)(pn + 1)

qn−1
√
pn−1n

en = −dn = θ(n− 1)qn
qn−1

√
pn−1n

(3.38)

and

(1 + λ2)
∂

∂t

[
− ln(pnsn) +

∞∑
k=1

�k
n

k

]
= Gn −Gn+1 (3.39)

where

�n = rn(	n − λqn)

λθ(n)
√
pn

= λ2
∞∑
k=0

λ2kg2k (3.40)

with

g2k = rnf
(2k+3)
n

θ(n)
√
pn
. (3.41)

So lattice equation (1.6) admits the infinitely many conservation laws (3.12) and (3.24), where

ρ(0)n = pn +
θ(n− 1)(1 + pn−1)qn

qn−1
√
pn−1

J (0)n = θ(n− 1)qn
√
pn−1

qn−1n

ρ(2)n = 1
2

(
ρ(0)n

)2
+ ρ(0)n + qnw(3)n J (2)n = bnw

(3)
n

ρ(4)n = 1
3

(
ρ(0)n

)3
+ 1

2

(
ρ(0)n

)2
+
(
ρ(0)n + 1

)
qnw

(3)
n + qnw(5)n J (4)n = bnw

(5)
n

. . .

ρ(2k)n = v2k +
1

2

∑
l1+l2=2k−2

vl1vl2 +
1

3

∑
l1+l2+l3=2k−4

vl1vl2vl3 + · · ·
(3.42)

+
1

k − 1

∑
l1+l2+···+lk−1=4

vl1vl2 · · · vlk−1 + vk−1
0 v2 +

vk+1
0

k + 1

+ v2(k−1) +
1

2

∑
l1+l2=2k−4

vl1vl2 +
1

3

∑
l1+l2+l3=2k−6

vl1vl2vl3 + · · ·

+
1

k − 2

∑
l1+l2+···+lk−2=4

vl1vl2 · · · vlk−2 + vk−2
0 v2 +

vk0

k

J (2k)n = bnw
(2k+1)
n

. . .

γ (−2)
n = − ln(θ(n)

√
pn) z(−2)

n = 1
2dn

γ (0)n = − ln(θ(n)
√
pn)− (1 + pn)(qn + θ(n)qn+1/

√
pn)

qn
z(0)n = cnqn +

en

2
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γ (2)n = (1 + pn)2(qn + θ(n)qn+1/
√
pn)

2

2q2
n

− (1 + pn)(qn + θ(n)qn+1/
√
pn)

qn

z(2)n = cnf
(3)
n = cnpn(qn + θ(n)qn+1

√
pn)

. . .

γ (2k)n = g2k +
1

2

∑
l1+l2=2k−2

gl1gl2 +
1

3

∑
l1+l2+l3=2k−4

gl1gl2gl3 + · · · (3.43)

+
1

k − 1

∑
l1+l2+···+lk−1=4

gl1gl2 . . . glk−1 + gk−1
0 g2 +

gk+1
0

k + 1

+ g2(k−1) +
1

2

∑
l1+l2=2k−4

gl1gl2 +
1

3

∑
l1+l2+l3=2k−6

gl1gl2gl3 + · · ·

+
1

k − 2

∑
l1+l2+···+lk−2=4

gl1gl2 . . . glk−2 + gk−2
0 g2 +

gk0

k

z(2k)n = cnf
(2k−1)
n

. . .

4. Integrable discretization of lattice equation (1.6)

In this section, we give an answer to the integrable discretization of lattice equation (1.6). We
first derive the discrete-time approximation to equation (1.7) from the following discrete zero
curvature equation:

ŨnVn = Vn+1Un. (4.1)

How do we choose a proper matrix Vn? This is a difficult problem. However, it is useful to
note that

ψ̃n − ψn

h
= (Vn − I)ψn

h

and

lim
h→0

Vn − I

h
= Nn (4.2)

where I is the unit matrix. Now let us consider problem (1.9) with

Un =
(
λpn − λ−1 qn

rn λsn

)
Vn = I +

h

1 + aλ2

(
λ2fn λun

λvn
wn+λ2gn

2

)
(4.3)

where qnrn = −sn(1 + pn), fn, un, vn,wn, gn and a are determined. A direct calculation
shows that

ŨnVn − Vn+1Un = 1 + aλ2

h

(
11 12

21 22

)
=
(

0 0
0 0

)
where

11 = λ3((fnp̃n − fn+1pn) + λ(Dfn + vnq̃n − un+1rn) +
λ(1 + aλ2)

h
(p̃n − pn)

12 = λ2

(
unp̃n +

gnq̃n

2
− fn+1qn − un+1sn

)
− un +

wnq̃n

2
+

1 + aλ2

h
(q̃n − qn)
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21 = λ2
(
fnr̃n + vns̃n − vn+1pn − gn+1rn

2

)
+ vn+1 − rnwn+1

2
+

1 + aλ2

h
(r̃n − rn)

22 = λ3

(
s̃ngn

2
− gn+1sn

2

)
+ λ

(
unr̃n +

wns̃n

2
− qnvn+1 − snwn+1

2

)
+
λ(1 + aλ2)

h
(s̃n − sn).

It follows that

p̃n − pn

h
= fn+1pn − fnp̃n + p̃n − pn (4.4)

p̃n − pn

h
= un+1rn −Dfn − vnq̃n (4.5)

q̃n − qn

h
= fn+1qn + un+1sn − unp̃n − gnq̃n

2
+ q̃n − qn (4.6)

q̃n − qn

h
= un − wnq̃n

2
(4.7)

r̃n − rn

h
= vn+1pn +

gn+1rn

2
− fnr̃n − vns̃n + r̃n − rn (4.8)

r̃n − rn

h
= rnwn+1

2
− vn+1 (4.9)

s̃n − sn

h
= gn+1sn

2
− sn + s̃n − s̃ngn

2
(4.10)

s̃n − sn

h
= qnvn+1 +

snwn+1

2
− unr̃n − wns̃n

2
. (4.11)

Here we have chosen a = 1 − h. Can we obtain integrable discretization for lattice
equation (1.7) from equations (4.4)–(4.11) by the proper choice of fn, un, vn,wn, and gn?
From condition (4.2) and some careful calculations, we let

un = q̃n

n

gn = q̃nsn−1

qn−1n

wn = − q̃nsn−1

qn−1n

fn = 1 + p̃n
n (4.12)

vn = −(1 + p̃n)sn−1

qn−1n

n = 1 + p̃n +
q̃nsn−1

qn−1
.

It follows from equations (4.4), (4.7) and (4.10) that

p̃n − pn

h
= pn(1 + p̃n+1)

n+1
− p̃n(1 + p̃n)

n

+ p̃n − pn

q̃n − qn

h
= q̃n

n

(
1 +

q̃nsn−1

2qn−1

)
(4.13)

s̃n − sn

h
= q̃n+1s

2
n

2qnn+1
− q̃ns̃nsn−1

2qn−1n

− sn + s̃n.

The map (4.13) is a discrete-time approximation of lattice equation (1.7). In order to prove
the map is an integrable discretization, it is necessary to show that equations (4.5), (4.6), (4.8),
(4.9) and (4.11) hold identically.

Note that

pn(1 + p̃n+1)

n+1
− p̃n(1 + p̃n)

n

+ p̃n − pn +
(1 + pn)q̃n+1sn

qnn+1

+
1 + p̃n+1

n+1
− 1 + p̃n

n

− (1 + p̃n)q̃nsn−1

qn−1n

= 0 (4.14)
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(1 + p̃n+1)qn

n+1
− (1 + p̃n)q̃n

n

+
q̃n+1sn

n+1
− q̃2

nsn−1

qn−1n

+ q̃n − qn = 0 (4.15)

q̃n+1s
2
n

qnn+1
− q̃ns̃nsn−1

qn−1n

+
(1 + p̃n+1)sn

n+1
− (1 + p̃n)s̃n

n

+ s̃n − sn = 0 (4.16)

−(1 + pn)(1 + p̃n+1)sn

qnn+1
− (1 + pn)q̃n+1s

2
n

q2
nn+1

+
(1 + p̃n)2s̃n
q̃nn

+
(1 + p̃n)s̃nsn−1

qn−1n

− (1 + p̃n)s̃n
q̃n

+
(1 + pn)sn

qn
= 0 (4.17)

then equations (4.5), (4.6), (4.11) and (4.8) are satisfied identically. Note that rn =
−sn(1+pn)/qn in the matrixUn, we should check the consistent condition ṙn = − ∂

∂t

[
(1+pn)sn
qn

]
.

From equation (4.9) we have

ṙn = sn

qn(1 + pn+1 + qn+1sn/qn)

[
1 + pn+1 +

(1 + pn)snqn+1

2qn

]
(4.18)

and the consistent condition is satisfied. We thus have shown that map (4.13) is an integrable
discretization of lattice equation (1.7). Here we give the proof of equations (4.14)–(4.17).
Note that

n = 1 + p̃n +
q̃nsn−1

qn−1

we have the following equations:

1

n+1

{
pn(1 + p̃n+1) +

(1 + pn)q̃n+1sn

qn
+ 1 + p̃n+1

}
= 1 + pn (4.19)

1

n

{
p̃n(1 + p̃n) +

(1 + p̃n)q̃nsn−1

qn−1
+ 1 + p̃n

}
= 1 + p̃n (4.20)

1

n+1
{(1 + p̃n+1)qn + q̃n+1sn} = qn (4.21)

1

n

{
(1 + p̃n)q̃n +

q̃2
nsn−1

qn−1

}
= q̃n (4.22)

1

n+1

{
(1 + p̃n+1)sn +

q̃n+1s
2
n

qn

}
= sn (4.23)

1

n

{
(1 + p̃n)s̃n +

q̃ns̃nsn−1

qn−1

}
= s̃n (4.24)

(1 + pn)sn
qnn+1

{
1 + p̃n+1 +

q̃n+1sn

qn

}
= (1 + pn)sn

qn
(4.25)

(1 + p̃n)s̃n
q̃nn

{
1 + p̃n +

q̃nsn−1

qn−1

}
= (1 + p̃n)s̃n

q̃n
. (4.26)

So equations (4.14)–(4.17) hold identically. We thus obtain an integrable discretization of
lattice equation (1.6),

p̃n − pn

h
= pn(1 + p̃n+1)

n+1
− p̃n(1 + p̃n)

n

+ p̃n − pn

(4.27)
q̃n − qn

h
= q̃n

n

(
1 +

θ(n− 1)q̃n
2qn−1

√
pn−1

)
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where

n = 1 + p̃n +
θ(n− 1)q̃n
qn−1

√
pn−1

.
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